Efficient Inference in Large Conditional Random Fields
نویسنده
چکیده
Conditional Random Fields (CRFs) are widely known to scale poorly, particularly for tasks with large numbers of states or with richly connected graphical structures. This is a consequence of inference having a time complexity which is at best quadratic in the number of states. This paper describes a novel parameterisation of the CRF which ties the majority of clique potentials, while allowing individual potentials for a subset of the labellings. This has two beneficial effects: the parameter space of the model (and thus the propensity to over-fit) is reduced, and the time complexity of training and decoding becomes sub-quadratic. On a standard natural language task, we reduce CRF training time four-fold, with no loss in accuracy. We also show how inference can be performed efficiently in richly connected graphs, in which current methods are intractable.
منابع مشابه
Efficient Inference of CRFs for Large-Scale Natural Language Data
This paper presents an efficient inference algorithm of conditional random fields (CRFs) for large-scale data. Our key idea is to decompose the output label state into an active set and an inactive set in which most unsupported transitions become a constant. Our method unifies two previous methods for efficient inference of CRFs, and also derives a simple but robust special case that performs f...
متن کاملConditional Random Fields for XML Trees
We present xml Conditional Random Fields (xcrfs), a framework for building conditional models to label xml data. xcrfs are Conditional Random Fields over unranked trees (where every node has an unbounded number of children). The maximal cliques of the graph are triangles consisting of a node and two adjacent children. We equip xcrfs with efficient dynamic programming algorithms for inference an...
متن کاملContinuous Conditional Random Fields for Efficient Regression in Large Fully Connected Graphs
When used for structured regression, powerful Conditional Random Fields (CRFs) are typically restricted to modeling effects of interactions among examples in local neighborhoods. Using more expressive representation would result in dense graphs, making these methods impractical for large-scale applications. To address this issue, we propose an effective CRF model with linear scale-up properties...
متن کاملClosed-Form Training of Conditional Random Fields for Large Scale Image Segmentation
We present LS-CRF, a new method for very efficient large-scale training of Conditional Random Fields (CRFs). It is inspired by existing closed-form expressions for the maximum likelihood parameters of a generative graphical model with tree topology. LS-CRF training requires only solving a set of independent regression problems, for which closed-form expression as well as efficient iterative sol...
متن کاملDynamic Conditional Random Fields for Jointly Labeling Multiple Sequences
Conditional random fields (CRFs) for sequence modeling have several advantages over joint models such as HMMs, including the ability to relax strong independence assumptions made in those models, and the ability to incorporate arbitrary overlapping features. Previous work has focused on linear-chain CRFs, which correspond to finite-state machines, and have efficient exact inference algorithms. ...
متن کامل